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ABSTRACT –A simple finite element algorithm is derived fc}rthe

solution of the one-dimensional advection-diffusiontransl,ort

equation. Local interpolation functional are obtained fcr

each subdomain, or element, by using linear basis functions. The

integral form of the finite element algorithm is evaluated by

using hypermatrices and a natural coordinate system. Assemblage

over two adjacent elements gilfesthe tridiagonal recursion relation

for chapeau functions. By time-splitting either a two- or three-

dimensional equation into a series of one-dimensional equations

and by using the basic one-dimensional finite element algorithm,

multi-dimensionalproblems can be solved without additional

programming complexity or storage.
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INTRODUCTION

The application of the finite element procedure for the

solution of partial differential equations is gaining widespread

acceptance, The ability of the finite element procedure to solve

problems that are arbitrarily shaped as well as the alleviation

of boundary condition problems associated with conventionalfinite

difference procedures is well known. By using local interpolation

functional over each subdomain, or element, a set of linearized

algebraic equations are obtained. These equations can be solved

by any direct, iterative, or inverse numerical technique. Subse-

quent use of an explicit or implicit integrationprocedure permits

closure of the solution over the global domain. Unfortunately,the

more commonly used technique of using triangular or isoparametric

elements in two-dimensional space (tetrahedralor cubic in three

dimensions) usually requires excessive coding and in some instances

excessive core and computational time. In order to overcome the

burden of computer programming, as well as core requirements and

computational time, a simple finite element algorithm is derived

which has the appearance of a tridiagonal recursion finite differ-

ence technique.

The algorithm is derived for the one-dimensional time-

dependent

functions

the basis

they have

(commonly

advection diffusion equation by using linear basis

(simplest finite element interpolation scheme). Because

functions are formed over two adjacent grid intervals,

the appearance of peaked hats, or “chapeau” functions

referred by geophysical fluid dynamists). Exa~?les
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of the use of chaPeau function solutions to geophysical problems

are reported by Raymond and Garder [1], Long and Hicks [2].

Pinder and Gray [3], Long and Pepper [4], and Price, Cavendish,

and Varga [5]. By time-splitting either the two or three-

dimensional equation into a series of one-dimensionalequations

and using the basic one-dimensionalalgoritti,multi-dimensional

problems can be solved without additional programming complexity

or storage. A three-dimensional,time-split chapeau function

procedure is discussed by Pepper and Kern [6].

DERIVATION OF THE ALGORITHM

The differential operator, L(c), is defined as

(1)

with the boundary constraint, ~(c), given as

l(c) Zalc+ka&. fi- a3=0 (2)

where c is the unknown variable, U is the velocity, k is the

diffusion coefficient, R is the unit vector normal to the sur-

face, and al and as are constants. For al = as = O, the flux is

computed as zero at the surface.

The lowest degree approximation valid for c(x,t) is a

linear function, c(x,t) = a(t) + b(t)x. Thus

c*(x,t) = l$(x)j{c(t)}m (3)

where the asterisk denotes the approximation function, and the

subscript m denotes belonging to a finite element interval. The
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brackets indicate a row matrix, and the braces denote a COl~

matrix. If k is assumed to be constant, the terms in equation

(1) are approximated as

~~’(x,t) _ d
ax - ~ lo(x)j{c(t)}m (4)

acx(x,t)=
at 1O(X)J {c(t)}’ m (5)

u* (x) = lo(x)j{u}m (6)

The Galerkin weightd r(;sidualmethod requires that the

solution ,errorbe made orthogonal to the space of the fun{:tion

:;et. Integrating over the solution domain, RmUaR and the
m’

ciomainclosure, RmnaR, yields ($(x) ~ $, c(t) ~ c for simplicity)

J {$}mL(c*)md~ - PI {$}ml(c’)mds = O (7)
Rm 3Rmn aR

w’here p is a separation constant, and Rm is the set of numerical

control volumes or elements. The assembly of equation (7) is

performed over the entire solution domain yielding

Sm[/ {$}mL(c*)md~ - P
J 1{$}m~(c’)mds= O

Rm ~Rm~ ~R
(8)

where Sm denotes the assembly algorithm, thereby placing the

elements of an array into designated locations in an alternative

(global) array. Using equations (4), (5), (6), and (8) and inte-

grating the diffusion term by parts give
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If p= -1 and al = a3 = O, equation (9) is reduced to

(9)

(lo)

where l$J{U}S lU]{$}.

The problem is now reduced to one of evaluating the

integrals appearing in equation (10). This can be easily de-

termined through the use of a natural coordinate system, as

shown in Fig. 1. This coordinate system, known as area coordinates

in structural mechanics [7], is discussed in more detail by Baker

and Soliman [8]. The integral of the arbitrary products of these

coordinate functions over a one-dimensional finite element space

is analytically established in terms of exponents as

[11)

where Lm is the length (span) of the line element. For example,
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(12)

(13)

.
2!()! 1!1!

(1+2+0)! (1+1+1)!

111! 1 (14)
0!2!

,(1+1+1)! (1+2+0]1

[1
21

(15)

Likewise, for ~ {@}{@}l~ l$jdx, and invoking the chain rule,

Lm
=—

6
P

d$ a~ acl+ 3Q acz—Z=T<l ax aE2 ax (16)

x-xlwhere ~2 = —.
Lm

and<l=~, the advection integral becomes

J{::} {::}+ml-lj:dx= if{:;} [:::::]dx (17)

Equation (17) can be rewritten in hypermatrix form [8] as

(18)

Equation (11) is used to transform equation (18) to

J {$}{0} & L$]dx = &

[1

{::} {:}

m {::}{;}

(19)
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The diffusion integral is simply expressed as

f
~{k dx @}&{@}dx ‘k

J
#{-l}~[-l,l]dx
~lLm

which becomes

J
~{ 1

[. 1
k dx$}&l@Jdx = ~ _; ‘;

Equation (9) is thus transformed to

‘m(%[; ;]{cm} ‘;[~~fl{cm} ‘~ ~~

(20)

(21)

1)-;{cm} = o

(22)
The finite difference recursion relation is established for

equation (22) (Fig. 2) by completing the assembly operation.

On the interval from i-l to i (Ax ),

Lm z ~ C:

7 [1
{1-1}+[“i_l>ui]12C;

~

k+—
[1
1-1 i-l

Lm -1 1 {: } = {0}
i

[1{~f}{f}~ci-I
}

-1 1 Ci
{}-2 2

(23)

If the same procedure is applied on the interval i to i+l

(Ax+), equation (22) becomes

“2Ax , Ax ,0
1{ 1

c:

Ax
1-1

, 2Ax +2Ax Ax
+’ c!

1
0 , Ax

+ , 2A;+ c’.1+1

[

-2ui_1-ui , 21J +U , ()
1 i-l i

1{}
c.

-u
1-1

+—
6 i-l-zui ‘ ‘i-~-ui+~~ 2ui+ui+1 Ci

o > -ui-2ui+l , IJ.+2U
1 i+ 1 c.1+1

+k

1 -1
Ax ‘G Y o

+ =1[

c.
1-1

1 1 1 -1
~’Ax ‘~’Ax c.

1

-1
o— 1+

‘ Ax+ ‘ Ax+ Ci+l (24)
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The equivalent difference-differentialequation for node i
is

Ax + 2c~(Ax +N+) + C;+lAX ]: [c;_l -
+

+ + [ci_l (-ui-l -2ui] + Ci(ui ~_ui+l) + ~i+~(2ui+ui+~)]

c.-
+ k [- ~+ c {~

c.

Ax ++ _&]=~ (25)
i Ax

+
Equation (25) holds for variable element length and nonuniform

velocity and is tridiagonal, i.e., involves only i-1, i, and i+l

grid points. If Ax = Ax+ and the velocity is constant, equation

(25) becomes

1 ‘~[ci+~ - ci-~l* [c;_l + 4C! + c!
1 1+1

- +- [Ci+, - 2ci + ci_l] = o (26)

By expressing the time derivative appearing in equation

(26) by an implicit one-step difference algorithm, equation (26)

can be rewritten as

u
+ 2Ax— [U(ci+~ - ci-~)n+~ + (l-P)(ci+~ - ci-~)n] (27)

- ~[AX2 ~(ci+l - 2ci + ci_l)‘+1 + (l-u)(ci+l - 2ci + ci_l)n] = o

where superscript n denotes present value at time level n, and

B is the time integrationparameter, O < u < 1. For u = 1,

equation (27) is fully implicit; for p = O, equation (27) is

explicit.
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Best

Since the

stability

results are obtained for p = 1/2 (Crank-Nicolson).

advection terms are crucial to the computational

of equation (27), an examination of the amplifica-

tion factor associated with equation (27) can be easily made.

The diffusion term.is of secondary importance since it tends

to stabilize (and damp) the distributionwith time. By the

procedure outlined by Roache [9], the relation gn exp(iAjAx)

is substituted into equation (27). Here g is the amplification

factor, j = ~, and A is the wavenumber (A = 2Tr/L)of the

Fourier component at time level n. The amplificationfactor

associated with equation (27) is

1 + COS(AAX) [2 + (1-u)~l
2

- (1-p)~ - 3u(~-u)j sin(AAx)

g=
—

1 + cos(~Ax)[l - pa] + pa + 3~J
2

— sin(AAx)
2

(28)

where o = UAt/Ax and a = kAt/2Ax2.

Setting a = O and u = 1/2 reduces equation (28) to

~ + cos(AAx) “
2

- ~ sin(AAx)
g.

~ + COS(AAX) + 3uj
2

~ sin(AAx)

(29)

which represents the amplification factor for the one-

dimensional advection equation. Since the numerator and

denominator are complex conjugates of each other in equation

(29), g = 1 for all Ax, At, and ~. Hence) there ‘s ‘either

damping nor amplification of waves. If p < 1/2, the solution

becomes amplified; if u > 1/2, heavy damping occurs. An

analysis of the phase speed of equation (29) along
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with speeds of several standard finite difference schemes

is discussed in detail by Long and Hicks [2]. By performing

a Taylor series expansion about x., equation (27) (With k . o)
1

can be transformed to the relation

aC ac UAX” a5c—.— —-%’”ax 180 axs
+ O (At2,Ax5) (30)

which shows the scheme to be fourth order accurate for uniform

element lengths.~ C,-n.k.+t %L.cq,
.

The technique can be extended to two- or three-dimer~sional

space by writing a series of one-dimensional equations. For

example, the three-dimensionaladvec~ion-diffusionequation is

split into three one-dimensional equations such that

act+uacn a
at k~n)=O

‘-aX(xaxax

The time-splittingprocedure is

Equations (25) and (31-33) have been

and Long and Pepper [4] to model the

of atmospheric pollutant.
.

APPLICATION AND RESULTS

discussed by Yanenko

(31)

(32)

(33)

[10].

used by Pepper and Kern [6]

three-dimensionaltransport

Equation (27) is used to solve the advection (k = O) of a

“cosine hill” passive scalar in one dimension. Fig. 3a shows
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‘the initial distribution at t = O. Fig. 3b shows the analytical

solution comparison with the solution obtained with equation (27).

The Courant number is equal to 0.4. For small Courant numbers,

the comparison between the ,twosolutions is nearly perfect. The

small wake created by the finite element solution is due to the

inability of the finite element method to resolve 2Ax waves.

Raymond and Garder [1] and Pepper and Kern [6] discuss ways of

eliminating dispersive wakes. As the Courant number increases,

more dispersion occurs.

The inclusion of diffusion is shown in Fig. 3C and 3d

for a = 0.01 and a = 0.0001 respectively. The lateral spreading

and peak damping of the distribution occur as expected due to

the inclusion of diffusion (as a increases, longer waves are

damped),

The advection of a two-dimensional cosine hill is shown in

Fig, 4. The Courant numbers in the x and y directions are equal

to 0.10. The initial distribution is shown in Fig. 4a with a

subsequent distribution shown at t = 150 in Fig. 4b. In this

test, equation (27) was solved twice: first in the x direction

and then in the y direction (analogousto an ADI technique).

The mesh size is 33 x 33. Core requirements were minimal (since

only a tridiagonal solution is required at one time), and compu-

tational running time was about 10 sec on an IB!I360/195. The

distribution is not significantly altered at t = 150; it should

ideally remain the same as at t = O. Solution of equation (25)

-13-



for variable velocity and nonuniform grid network in two- and

three-dimensional space is discussed by Pepper and Kern [6].

The use of higher degree interpolationpolynomials, such

as quadratic and cubic elements, does not lend itself directly
.r+-&:’ue>

to establishment of a simple~” “ ‘~? c< recursion relation,tiati~ti~,

These functions do yield higher order accurate

and Soliman [8]), which are readily programmed

finite element algorithm, equation (10).

algorithms (Baker

with the parent
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CAPTIONS FOR FIGURES

Fig. 1. Natural coordinate”system.

Fig. 2. Assemblage over two adjacent elements.

Fig. 3. Advection of a concentrationpacket in one dimension
with o = 0.4. (Dashed line is analytical solution.)

Fig. 4. Two-dimensional advection of a cosine hill passive
scalar.
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Fig. 1. Natural coordinate system.
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